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We study the behavior of linear polymers (modeled by self-avoiding random walks of N steps) on ran-
dom fractal structures, both in Euclidean metric (7 space) and “chemical” metric (I space). The chemical
distance / between two sites on the structure at distance r from each other is the length of the shortest
path connecting them, I ~r9™" where d,;, is the fractal dimension of the shortest path. We consider
the average probabilities (P(I,N)) and (P (r,N)) to find a polymer of N monomers having a chemical
end-to-end distance / or an Euclidean end-to-end distance r, respectively. We also study the first mo-
ments (/(N)) and (r(N)) of these probabilities. Our numerical results, obtained for two-dimensional
percolation clusters at criticality, show that the fluctuations in / space are considerably smaller than in
space, suggesting that the / metric is more appropriate for studying structural properties of polymers in

disordered media. We ﬁ’nd (I(N))~N"!, with v, =0.87+0.02, and {P(I,N)) ~(1/l)yg’ when y <0.35,
and (P(I,N))~(1/l)yg’ exp(—bysl) when y >0.35, where y‘:’l/NVI, g/=2.5+0.2, g/=3.0%+0.2, and
8,=1/(1—v,). From this form, we show analytically that (P(r,N))~( 1/r)x% exp(—ex o ), where
xEr/NV’, v, =v; /A min> & =818 min, and 8,=1/(1—w,). Here d;,=1.13. These predictions are sup-
ported by the numerical simulations in r space, which yield v, =0.76+0.02 and g, =2.9+0.2. We also
derive analytically the way the number of configurations taken in the averages affects the exponent §,.
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I. INTRODUCTION

In past years, the question how linear polymers behave
in disordered media that are self-similar on certain length
scales has attracted much attention (for recent reviews
see [1,2] and references cited therein). So far, most of the
work has been concentrated on the problem how the
mean end-to-end distance of the chain (7(N)) depends
on the number of monomers N of the polymer.

From a microscopic point of view, more important is
the configurational averaged distribution function
(P(r,N)), which is defined as the probability that a po-
lymer of N monomers has an end-to-end distance . The
mean end-to-end distance {r(N)) is only the first mo-
ment of {P(r,N)) and contains only part of the informa-
tion. While the distribution function has been well stud-
ied in regular ordered systems [3—13], not much is known
about the functional form of { P(r,N)) in disordered sys-
tems [1,2].

In contrast, the analogous problem of the distribution
function of random walks without the self-avoiding con-
straint has been studied extensively, also in disordered
systems that are fractal on certain length scales [14-20].
It has been found that in order to understand the com-
plex behavior of (P(r,N)) it is crucial to know the
behavior in chemical | space [16,17,20], which is simpler
and easier to obtain. The chemical distance ! between
two sites on a structure separated by the (Euclidean) dis-
tance r is defined as the length of the shortest path on the
structure connecting them. The average (/(r)) scales as
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(1(r)) ~ 7™ where d i, is the fractal dimension of the
shortest path [14]. It has been shown for random walks
on random fractals that the probability P;(/,N) to find a
random walker after N time steps on a site 7 at chemical
distance [ varies little within one configuration and be-
tween different configurations [16]. Using this fact, one
can deduce, via convolutional integrals, analytical expres-
sions for the relevant probability distribution { P(r,N)).

Here we show that the shortest path metric (/ space) is
also useful to study polymers modeled by self-avoiding
random walks (SAWSs) in disordered structures. We in-
troduce the quantity ( P(I,N)), which is defined as the
probability that the two ends of a polymer of N mono-
mers are separated by the chemical distance /, averaged
over many configurations of the substrate. We find that,
similar to the random walk case, the fluctuations in !/
space are significantly smaller than the fluctuations in r
space and derive an analytical expression for the asymp-
totic behavior of { P(r,N)).

The paper is organized as follows. To test our method
of generating SAWs we first study (Sec. II) SAWs on the
regular square lattice. Next, in Sec. III, we present
analytical and numerical results for SAWs in two-
dimensional (2D) percolation, both in / and r space, and
show how the mean distribution functions in / and r
space are related. Finally, in Sec. IV, we present some
concluding remarks.

II. SAWS ON REGULAR LATTICES

Polymers consisting of N monomers are commonly
modeled by N-step SAW. The set of N-step SAWs is
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defined as the subset of all random walks of N steps that
do not self-intersect. However, to generate long SAWs
by generating all random walks, is numerically unpracti-
cal since the probability to obtain such SAWs decreases
exponentially with N. We therefore generated SAWs by
the enrichment method [21]. First, n-step random walks
are generated until a random walk without self-
intersections is obtained. Next, from the end point of
this self-avoiding random walk, another n-step random
walk is started. If this second n-step walk does not inter-
sect with itself and with the first n-step walk, we have ob-
tained a 2n-step SAW this way. Otherwise, we try again,
but only k trials are allowed. If the procedure fails, we
start from the very beginning. This process continues to
obtain 3n-, 4n-,. . . step SAWs until the desired SAW of
N steps is achieved.

To test our approach, we first studied the mean end-
to-end distance {(7(N)) and the probability distribution
P(r,N) on a square lattice (d =2), where r ~[ and analyt-
ical results are available. Figure 1(a) shows (7(N)) as a
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FIG. 1. (a) Plot of (r(N)) versus N on a double-logarithmic
graph. The circles represent data from simulations of SAWs on
a regular square lattice. The line represents the theoretical pre-
diction with slope v=0.75. The averages include 10° SAW
configurations of 400 steps. The walks were generated with the
enrichment parameters kK = 1000 and n =40. (b) Plot of rP(r,N)
versus r/N¥ on a double-logarithmic graph. The circles
represent the numerical data for N =100 and the triangles for
N=200. The line represents the analytical expression Eq. (2)
with  v=0.75, &=4, g=2.6%+0.1, A4=4.0+0.5, and
a=1.60+£0.3.
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function of N. The asymptotic straight line on the
double-logarithmic plot represents the known scaling
proportionality

{(r)~N", (1

with v=2, which is in excellent agreement with our nu-
merical simulation. Figure 1(b) shows the probability dis-
tribution P(r,N). As seen in the figure, the simulations
support the overall scaling approximation

P(r,N)=(A /r)(r/N")exp[ —a(r/N*)®], (2)

with v=0.75, 6=1/(1—v)=4, and g=d -+, where
#=0.6%0.1, in agreement with the theoretical predic-
tions [3—-6]. The prefactor ~1/r is required to ensure
the normalization f dr P(r,N)=1. The overall agree-
ment between the data ‘and the theory strongly supports
the accuracy of the enrichment method. We notice that
for r /NV<<1 the exponent ¢ is expected to be smaller
d=% [5,6]. However, because of the relatively short
SAW chains that we have used we cannot determine such
a value accurately. For further numerical results related
to this problem see, e.g., Ref. [8].

III. SAWS IN 2D PERCOLATION CLUSTERS
AT CRITICALITY

Next we used the enrichment method to study SAWs
in disordered media, modeled by the incipient percolation
cluster on a square lattice (see, e.g. [17]). Figure 2(a)
shows that the mean chemical end-to-end distance
(I(N)) follows a power law

({(N))~N"", (3a)

with v;=0.87+0.02, in agreement with theoretical pre-
dictions based on Flory-type arguments [14]

_2+v/d”

V= , (3b)
" ov+dP

where v=d/B/(d[B—1) and df and d!? are the chemical
dimension and the anomalous diffusion exponent of the
percolation backbone. The backbone exponents control
the SAW exponents on percolation since an infinite SAW
can exist only on the percolation backbone [14]. Equa-
tion (3b) predicts the following values for v;,. Ind =2, we
have df=1.42 and d/f=2.37, yielding v,;=0.87. In
d=3, we have df=1.29 and d/=2.27, yielding
v;=0.90. Note that for d >6, we have df=1 and
d2=2, yielding v,=1.
Since [ ~r ™", we expect

(r(N))~N"", (4a)
where

v, =V /dmin . (4b)

For d=2, d_;,,=1.133+£0.002 [22], which yields
v,=0.77%£0.02. This result is consistent with other
values reported recently in the literature (see [1,2] and
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references therein). For d =3, d_;,,=1.35+0.03 [22],
which yields v,=0.67+0.03. For d =6, d_;,=2 and
thus v, =1.

Next we discuss the average probability ( P(/,N)) that
the end point of a SAW of N steps is at a chemical dis-
tance / from its starting point. To obtain {(P(I,N)), we
averaged over 1000 realizations of SAWs on 1000 per-
colation clusters each. Figure 2(b) shows I{P(I,N))

versus I /N "' and suggests that for I /N’ >0.35,

(PU,N)Y~(B' /1)1 /N F¥lexp[ —b(I/N* )],  (5a)

with 8,=1/(1—v,), B’=1.6+0.5, g;=3.0%0.2, and
b=0.16+0.03. For I /N"' <0.35, the data suggest that

(P(I,N))=~(B/IXI/N")¥ , (5b)
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FIG. 2. (a) Plot of {(I(N)) versus N on a double-logarithmic
graph for SAWs on two-dimensional percolation clusters at cri-
ticality, grown on a square lattice up to 400 chemical shells.
The triangles are the numerical data while the line is a best fit
with a slope v;=0.871+0.02. The chains were generated with
enrichment parameters k=1000 and » =35 up to a maximum
number of N =400 SAW steps. (b) Plot of I{P(],N)) versus
I/N" ona double-logarithmic graph. The circles represent the
numerical data for N =100 and the triangles for N=200. The

dashed line represents the functional form B'x‘’exp(—bx oy
[Eq. (5a)], where x =1/N ", with v, =0.87+0.02, 8, =1/(1—v)),
g/=3.0£0.2, B’=1.6+0.5, and b=0.16+0.03. For x <0.35, a
smaller value of the exponent g; represents the data better and
we find g, =2.5+0.2 and B=0.9510.5 [Eq. (5b)].
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with B=0.95%£0.5 and g;=2.5%0.2. Notice that
(P(I,N)) is normalized according to fdl(P(I,N) y=1.

In order to learn about the fluctuations in / space, we
calculated the number H(InP)d InP of sites at fixed
chemical distance / from the origin, being reached after N
SAW steps, with probabilities between InP and
InP+d InP. Similarly for P(r,N), we calculated the
analogous histogram for sites on the same cluster at a
fixed Euclidean distance r from the origin. Figure 3
shows the histograms H(InP) for SAWs of N =50 steps
on three typical percolation clusters, with /=30 [Fig.
3(a)] and r=19 [Fig. 3(b)]. We see that the histogram
H(InP) is much narrower in / space than in r space.
While sites i at fixed chemical distance / from the origin
have close probabilities to be reached by the SAW, the
probabilities at fixed r fluctuate strongly. A similar
behavior was found earlier for random walks on percola-
tion clusters [16].

Next we wish to use the form found for ( P(I,N)) and
the fact that H(InP) in [/ space is relatively narrow to
learn about the analogous function in r space, { P(r,N)).
The approach is similar to that derived in Refs.
[16,17,20]; see also Ref. [14]. We define the probability
P,(r,N) that after N steps the SAW has arrived at a back-
bone site i at distance r from the origin of the SAW, on a
given configuration. Assuming that there are N2 sites on
the backbone at distance r in the considered

configuration, the probability P(r,N) for that
configuration is simply
N7
P(r,N)=3 P;(r,N) . (6)
i=1
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FIG. 3. Histograms of the number of sites having the value
(a) —InP(I,N) for N=50 and /=30 and (b) —InP(r,N) for
N=50and r =19. Shown are results of 10° SAW configurations
on three typical two-dimensional percolation clusters at critical-

ity.
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Among the N2 sites there are NP(r) sites at chemical dis-
tance / from the center and we can write

N)= 3 Nfr)P/(I,N)
I1=1_. (r)

min

o0
= X
I=1_ ()

min

P(r,

[NE(r)/NEIP(LN) . 7

In deriving the second equality, we have assumed that
there are N/ sites at chemical distance / from the center
and that P;(I,N)~P(l,N)/N{. This is justified since the
fluctuations of P;(I,N) are small. By definition, [ ; (r) is
the length of the shortest chemical path between the
center and any site i/ on the backbone at fixed distance r
in the considered configuration. Assuming further that,
similar to the random-walk case, the fluctuations of
P(I,N) between different configurations are small, we can
write ~(P(l,N)). Averaging over N,,
configurations and replacing the sum in (7) by an integral
yields the desired relation between (P(I/,N)) and
(P(r,N)),

<P<r,N)>=fl°°, ¢3(r/DP(1,N)dl , ®)

where ¢5(r|I)=Np(r)/Nf is the probability that two
sites on the backbone separated by chemical distance /
are at Euclidean distance . The analogous quantity was
studied intensively for the structure of the infinite per-
colation cluster at criticality [14,20,23,24]. We expect a
similar functional form for the percolation backbone

$2(rI=(CP /r)(r /1" min )8 exp — CB(r /1" Pmin B |

9)
For fixed r, ¢%(r|l) has a

maximum at [ . (r)=ag,r ™, where a,,,
=(8Cf/g3)d"““_ The lower integration limit in (8),
Lin =l in(r, N4, ), is that of the backbone, which is by
definition the same as for the whole percolation cluster.
It has been shown in [20] that /_; depends on N,, in the
following way:

with d=d_. /(d

min min - 1 )'

r, <<r.N,)

lmin(r’jvav)/Z d_. (10)
r(r/r.) ™, r>r.(N,,),
where
r.(N,, )=(nz+InN_,)/In(1/p,) . (11)

Here z is the lattice coordination and p. is the critical
concentration (p, =0.593 for the square lattice).

For evaluating (8), we follow the procedure described
earlier in Refs. [14,16,20]. For I ;,(*,N,, )<l <I_..(7),
the integrand in (8) is the product of two exponential

functigns, Whéc% shows a steep maximum at
I*=g, ™ (r/E,) ", w1th 8)/;—1/(1— ) s, and
£,=N""{C?/[b8,(d,—D]}" min=N"" /¢

Applying the method of steepest descent, we obtain
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.
N’

By definition, Eq. (12) holds only for /* between
Imin(?,N,,) and [, () and this condition then deter-
mines the r regime ry <r <r(N,,), where (12) is valid.
We find

=£,[87/C8]

In{P(r,N))=—c (12)

1/8, (13a)

and

£ (N, .

Equation (12) represents only the exponential part of
(P(r,N)). It is expected that, similar to Egs. (2) and (5),
this exponential will be multiplied by a power-law in the
scaling variable r /N . Thus we expect

(P(r,N))

In Fig. 4(a) we show results for {r(N)

Fx(Ny)= (13b)

=(C/r)r/N"" exp[—c r/N"r ) 1. (14)
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FIG. 4. (a) Plot of {#(N)) versus N on a double-logarithmic
scale on two-dimensional percolation clusters at criticality. The
circles represent the numerical data and the line is a best fit with
a slope v,=0.76+0.02, for the same chains and clusters con-
sidered in Fig. 2. (b) Plot of 7{P(r,N)) versus r /N " on a dou-
ble logarithmic graph. The circles represent the numerical data
for N=100 and the triangles for N =200. The line represents
the analytical function Eq. (14), which fits the data for all
r/N'", with v,=0.76+0.02, 8,=1/(1—wv,) , g =2.9+0.2,
C=2.7£0.5, and ¢ =0.85%0.05.
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power law (r(N))~N'" and yielding v,=0.76+0.02,
consistent with our result Eq. (3a) and the prediction (4).
Figure 4(b) shows r{P(r,N)) versus r/N"". The figure
supports our scaling result (14). Moreover, the exponents
g; and g, describing the small / and r behavior in Egs.
(5b) and (14) can be related to each other from the ap-
proximation { P(r=1,N))=(P(I=1,N)), yielding

grzgldmin . (15)

Our numerical results yield g;=2.510.2 and
g,=2.91%0.2, in good agreement with the prediction Eq.
(15).

For r > ry(N,,), the integrand in (8) is peaked sharply
at/=1_,.(r,N,,) and we predict theoretically

In{ P(r,N)) ~ —[ L (r, N ) /N1

~_rc(Nav)Bl(l_dmin)(r/gr)sldmin , (16)

where now the exponent in the exponential becomes
6,d nin==8.7, much larger than §,=4.3 in (12). This
behavior, however, cannot be seen in the figure since
r«(N,,)=2&, and we can only reach r values below
r =2, with the present data.
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IV. SUMMARY AND CONCLUSIONS

We have presented analytical and numerical arguments
showing that the chemical metric is useful to characterize
SAWs in disordered structures. We find that SAWs in /
space display fewer fluctuations than in r space and there-
fore both (I/(N)) and the probability density {P(I,N))
can be studied more accurately. From the form of
(P(I,N)) we have derived analytical expressions for the
average probability density in r space, { P(r,N)), which
are supported by numerical simulations. The above
findings are analogous to those found for random walks
in disordered structures.

The analytical forms found here [Eq. (5) and (14)] for
(P(r,N)) and (P(I,N)) for SAWs on percolation have
the same functional form as P(r,N) for SAWSs on regular
lattices, but with different exponents mainly related to
the percolation backbone. We have also presented a
theory, analogous to that in Ref. [20], for the asymptotic
form Eq. (16) of the distribution function {P(r,N)) as a
function of the number N,, of configurations over which
averages are performed.
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